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Abstract

Artificial intelligence (Al) is transforming economies and promising new
opportunities for productivity, growth, and resilience. Countries are
responding with national Al strategies to capitalise on these
transformations. However, no country today has sufficient data on, or a
targeted plan for, national Al compute capacity. This policy blind-spot may
jeopardise domestic economic goals. This report provides the first blueprint
for policy makers to help assess and plan for the national Al compute
capacity needed to enable productivity gains and capture Al’s full economic
potential. It provides guidance for policy makers on how to develop a
national Al compute plan along three dimensions: capacity (availability and
use), effectiveness (people, policy, innovation, access), and resilience
(security, sovereignty, sustainability). The report also defines Al compute,
takes stock of indicators, datasets, and proxies for measuring national Al
compute capacity, and identifies obstacles to measuring and benchmarking
national Al compute capacity across countries.
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Abregé

L’intelligence artificielle (IA) transforme les économies et les sociétés et
ouvre la voie a de nouvelles perspectives en termes de productivité, de
croissance et de résilience. Dans une volonté de capitaliser sur ces
transformations, les pays définissent des stratégies nationales en matiere
d’'lA. En revanche, ils omettent souvent de déterminer s'ils disposent d’une
capacité de calcul pour I'lA suffisante pour atteindre leurs objectifs
nationaux, concrétiser les gains de productivité et exploiter le plein potentiel
économique de I'lA. Ce rapport dessine un cadre destiné a aider les
décideurs a définir des plans nationaux en matiére de capacité de calcul
pour I'l|A qui soient cohérents avec les stratégies et besoins de leur pays
dans le domaine de I'lA. Il définit la notion de capacité de calcul pour I'lA et
recense les indicateurs, les ensembles de données et les variables de
substitution permettant de mesurer la capacité de calcul nationale. Il
indique ensuite aux décideurs comment évaluer les besoins technologiques
et définir lesdits plans nationaux en prenant en considération la capacité de
calcul (disponibilité et utilisation), I'efficacité (ressources humaines,
politique, innovation, acces) et la résilience (sécurité, souveraineteé,
durabilité). Le rapport fait €également le point sur les obstacles a la mesure
et I'analyse comparative des capacités de calcul pour I'lA entre les pays.
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Executive summary

Artificial intelligence (Al) is transforming economies and promising new opportunities for
productivity, growth, and resilience. Embracing Al-enabled transformation depends on the availability
of infrastructure and software to train and use Al models at scale. Ensuring countries have sufficient such
“Al compute capacity” to meet their needs is critical to capturing Al’s full economic potential.

Many countries have developed national Al strategies without fully assessing whether they have
sufficient domestic Al compute infrastructure and software to realise their goals. Other Al enablers,
like data, algorithms, and skills, receive significant attention in policy circles, but the hardware, software,
and related infrastructure that make Al advances possible have received comparatively less attention.
Today, standardised measures of national Al compute capacity remain a policy gap. Such measures would
give OECD and partner economies a greater understanding of Al compute and its relationship to the
diffusion of Al, improve the implementation of Al strategies, and inform future policy and investments.

The demand for Al compute has grown dramatically for machine learning systems, especially deep-
learning and neural networks. According to research, the computational capabilities required to train
modern machine learning systems, measured in number of mathematical operations (i.e., floating-point
operations per second, or FLOPS), has multiplied by hundreds of thousands of times since 2012 (OpenAll,
2018py; Sevilla et al., 2022p2)), despite algorithmic and software improvements that reduce computing
power needs. The increasing compute needs of Al systems create more demand for specialised Al
software, hardware, and related infrastructure, along with the skilled workforce necessary to utilise them
efficiently and effectively.

As governments invest in developing cutting-edge Al, compute divides can emerge or deepen. An
imbalance of such compute resources risks reinforcing socioeconomic divides, creating further differences
in competitive advantage and productivity gains. Over the past decade, private sector led initiatives within
countries have increasingly benefitted from state-of-the-art Al compute resources, particularly from
commercial cloud service providers, compared to public research institutes and academia. The OECD.AI
Expert Group on Al Compute and Climate advances collective understanding and measurement of Al
compute to shed light on Al compute divides between countries and within national Al ecosystems.

This report offers a blueprint for policy makers to develop national Al compute plans aligned with
national Al strategies and domestic needs. It takes stock of existing and proposed indicators, datasets,
and proxies for measuring national Al compute capacity. Policy makers can assess technology needs and
develop national Al compute plans by considering compute’s capacity (availability and use), effectiveness
(people, policy, innovation, access), and resilience (security, sovereignty, sustainability).

Findings and measurement gaps are identified to inform future work in developing Al-specific
metrics to quantify and benchmark Al compute capacity across countries. They include: national Al
policy initiatives need to take Al compute capacity into account; national and regional data collection and
measurement standards need to expand; policy makers need insights into the compute demands of Al
systems; Al-specific measurements should be differentiated from general-purpose compute; workers need
access to Al compute related skills and training for effective Al compute use; and Al compute supply chains
and inputs need to be mapped and analysed.
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Résumeé

L’intelligence artificielle (IA) transforme les économies et les sociétés et ouvre la voie a de
nouvelles perspectives en termes de productivité, de croissance et de résilience. La capacité d'un
pays a amorcer une transformation fondée sur I'lA dépend de la disponibilité des infrastructures et des
logiciels nécessaires pour entrainer et utiliser les modéles d’lA a grande échelle. Pour exploiter le plein
potentiel économique de I'lA, il est impératif que les pays disposent de capacités de calcul a la hauteur de
leurs besoins.

De nombreux pays ont défini des stratégies nationales en matiére d’lA sans véritablement
déterminer s’ils possédent a I’échelle nationale des infrastructures et logiciels suffisants pour
atteindre leurs objectifs. Si les pouvoirs publics s’intéressent de prés a un certain nombre de facteurs
qui sous-tendent I'lA, comme les données, les algorithmes et les compétences, ils prétent une attention
relativement moindre au matériel, aux logiciels et a I'infrastructure connexe indispensables aux progrés de
I'lA. On ne dispose pas a I'heure actuelle de mesures normalisées des capacités nationales de calcul pour
I'lA. De telles mesures aideraient les pays de 'OCDE et les économies partenaires a mieux appréhender
la capacité de calcul et sa corrélation avec la diffusion de I'lA, a améliorer la mise en ceuvre des stratégies
en matiere d’'lA et a guider les politiques et les investissements futurs.

On assiste a une explosion des besoins en capacité de calcul pour les systémes d’apprentissage
automatique, en particulier les réseaux neuronaux et I'apprentissage profond. Des travaux de
recherche ont montré que les capacités de calcul requises pour entrainer des systémes d’apprentissage
automatigue modernes, mesurées en nombre d’opérations mathématiques (c’est-a-dire en nombre
d’opérations en virgule flottante par seconde, ou flops) sont des centaines de milliers de fois supérieures
a celles de 20121 (OpenAl, 2018yy; Sevilla et al., 2022j2)), bien que les progrés des algorithmes et des
logiciels aient permis de réduire les besoins en puissance de calcul. Les besoins croissants en capacité
de calcul des systemes d’lA font progresser la demande de logiciels spécialisés dans I'lA, de matériel et
d’infrastructures connexes, ainsi que d’une main-d’ceuvre qualifiée capable de les utiliser de maniére
efficiente et efficace.

A mesure que les pouvoirs publics investissent dans la conception de systémes d’IA de pointe,
des disparités de capacités de calcul peuvent apparaitre ou s’aggraver. Les déséquilibres liés a ces
ressources risquent de creuser les fractures socio-économiques existantes et, par ricochet, d’accentuer
les écarts de compétitivité et de productivité. Au cours des dix derniéres années, les initiatives menées
dans les pays par des acteurs du secteur privé ont davantage bénéficié de ressources de calcul
ultramodernes, fournies notamment par des prestataires de services infonuagiques commerciaux, que les
établissements publics de recherche et les universités. Le Groupe d’experts OECD.AI sur la capacité de
calcul pour I'lA et le climat s’attache a faire progresser la compréhension commune et la mesure de la
capacité de calcul pour mettre en évidence les écarts entre les pays et au sein des écosystemes d’lA
nationaux.
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Le présent rapport propose un cadre visant a aider les décideurs a définir des plans nationaux en
matiére de capacité de calcul pour I'lA qui soient cohérents avec les stratégies et besoins de leur
pays dans le domaine de I'lA. Il recense les indicateurs, les ensembles de données et les variables de
substitution existants et envisagés pour mesurer la capacité de calcul nationale pour I'lA. Les décideurs
peuvent évaluer les besoins technologiques et définir lesdits plans nationaux en prenant en considération
la capacité de calcul (disponibilité et utilisation), I'efficacité (ressources humaines, politique, innovation,
acces) et la résilience (sécurité, souveraineté, durabilité).

Les lacunes en termes de mesure et les conclusions qui ressortent du rapport pourront nourrir de
prochains travaux et aider a élaborer des indicateurs permettant de quantifier et de comparer la
capacité de calcul pour I'lA d’un pays a I’autre. Plusieurs points se dégagent : les initiatives nationales
en matiére d’lA doivent tenir compte de la capacité de calcul ; les normes de collecte de données et de
mesure nationales et régionales doivent étre étendues ; les décideurs devraient connaitre les besoins en
capacité de calcul des systemes d’lA ; les mesures portant spécifiquement sur I'lA devraient étre
différenciées des capacités de calcul a visée générale ; les travailleurs doivent avoir accés aux
compeétences et aux formations liées a la capacité de calcul pour I'lA ; et il convient d’analyser les chaines
d’approvisionnement et les intrants liés a la capacité de calcul pour I'lA.
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Acronyms and abbreviations

Al Artificial intelligence

AWS Amazon Web Services

CPU Central processing unit

EV Electric vehicle

FLOPS Floating-point operations per second
GPAI Global Partnership for Artificial Intelligence
GPU Graphics processing unit

HPC High-performance computing

ICT Information and communication technology
IGO Intergovernmental organisation

loT Internet-of-Things

IT Information technology

kw Kilowatt

ML Machine learning

NLP Natural language processing

NPU Neural processing unit

OECD Organisation for Economic Co-operation and Development
PFLOPS Peta floating-point operations per second
R&D Research and development

SaaS Software as a service

SME Small and medium-sized enterprise

TPU Tensor processing unit

TFLOPS Tera floating-point operations per second
VPA Virtual personal assistant
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Introduction

1.1. Objective of this work

Artificial intelligence (Al) is transforming economies and societies, bringing opportunities for increased
economic productivity, inclusive growth, and breakthroughs in addressing global challenges.
Understanding countries’ capacity and readiness to embrace this fast-evolving transition is essential,
including the availability of relevant infrastructure enabling computation for Al at scale.

The creation and use of Al relies on key elements, such as a skilled workforce, enabling public policies,
regulations and legal frameworks, access to data, and sufficient computing resources — commonly referred
to as “compute”. For machine learning (ML) based Al systems, there are two key steps involved in their
development and use that are enabled by compute: (1) training, meaning the creation or selection of
models/algorithms and their calibration, and (2) inferencing, meaning using the Al system to determine an
output. While other key enablers have received significant attention in policy circles, the hardware,
software, and related compute infrastructure that make Al advances possible receive comparatively less
attention.

Ensuring countries have sufficient Al compute to meet their needs is critical to capturing Al’s full economic
potential. Many countries developed Al plans without a full assessment of whether they have sufficient
domestic Al compute to realise these goals. The development of standardised measures for Al compute
remains a policy and data gap. Policy makers require accurate and reliable measures of Al compute and
how much national capacity they have, to make better-informed decisions and reap the full benefits of Al.
Greater understanding of Al compute and its relationship to the diffusion of Al across OECD and partner
economies can improve implementation of national Al strategies and guide future policymaking and
investment.

Governments committed to the first intergovernmental standard on Al in the 2019 OECD Principles on
Artificial Intelligence, “fostering the development of, and access to, a digital ecosystem for trustworthy Al”,
including underlying infrastructure such as Al compute (OECD, 20193)). Absent a measurement framework
to facilitate the analysis of national Al compute capacity, “Al-compute divides” could be left unchecked
within countries, such as between the private sector and academia (Ahmed and Wahed, 20204), and
between countries, such as between developed and emerging economies. This could create gaps between
those that have the resources to create the complex Al models that lead to competitive advantage,
inclusive growth, and productivity gains in a global digital economy, and those that do not.

The OECD.AI Expert Group on Al Compute and Climate (the Expert Group) advances understanding and
measurement of Al compute to help policy makers understand their Al compute needs and work towards
addressing them (Box 1). The Expert Group assists the OECD in developing a framework for countries to
assess their domestic Al compute capacity, to establish baselines and benchmarks to guide public policy
and investment decisions. In doing so, it helps countries answer three fundamental questions: (1) How
much Al compute does the country have? (2) How much Al compute does the country need (i.e., is it
sufficient to support national Al strategy objectives)? (3) How does it compare to other countries?
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This report is informed by the Expert Group and delivers the next steps identified in a scoping note
presented in December 2021 to the OECD Committee on Digital Economy Policy (CDEP). The Expert
Group undertook a stocktaking of existing indicators, proxies, frameworks, and metrics for measuring Al
compute at the national or sectoral level (Annexes B and C). Complemented by a gap analysis, this
stocktaking helps avoid duplication of efforts in developing a measurement framework for data collection.

Box 1. The OECD.AIl Expert Group on Al Compute and Climate

The OECD Network of Experts on Al (ONE Al) provides policy, technical, and business input to OECD
analysis and recommendations. As a multidisciplinary and multistakeholder group, it provides the
OECD with an outward perspective on Al, also serving as a platform to share information with other
international initiatives. ONE Al raises awareness about trustworthy Al and sustainability issues, and
other policy initiatives, particularly where international co-operation is useful.

The OECD.AI Expert Group on Al Compute and Climate (the Expert Group) advances understanding
of Al compute and helps countries build awareness and work towards closing “Al compute divides”
within and between countries. The Expert Group provides actionable and user-friendly evidence on Al
compute, including its environmental impacts. In doing so, it enables policy makers to evaluate current
and future national Al compute needs and corresponding capacity.

An Al compute divide can manifest within countries between the private sector and academia, as
private-sector actors often have greater resources and access to Al compute to advance their
objectives. An Al compute divide can also manifest and worsen between countries, namely between
advanced and emerging economies, if governments cannot make informed decisions about
investments to fulfil their national Al plans. This opens a gap in countries’ ability to compute the complex
Al models that lead to productivity gains in a global digital economy.

The Expert Group supports policy makers and practitioners in developing tools and indicators
measurable at national level and that enable sufficient geographic coverage for benchmarking.
Recommendations resulting from its work strive to be comprehensive, accessible to technical and non-
technical audiences, and dynamic and time-proof, allowing for evolution as compute hardware and
software advance (e.g., faster processors, larger memory, next-generation networks, quantum
computing, etc.).

The Expert Group is co-chaired by Keith Strier (Vice President of Worldwide Al Initiatives at NVIDIA),
Jack Clark (Co-Founder of Anthropic), and Tamsin Heath (Deputy Director of Economic Security at the
Department of Digital, Culture, Media and Sport, United Kingdom). Jennifer Tyldesley (Department of
Digital, Culture, Media and Sport, United Kingdom), Sana Khareghani (former Head of the Office for Al
United Kingdom) and Satoshi Matsuoka (Director, RIKEN Centre for Computational Science, Japan)
were formerly co-chairs. The Expert Group meets virtually every three to four weeks since April 2021.

Source: OECD.AI Expert Group on Al Compute and Climate. Members are listed in Annex E with biographies are available on OECD.AI

1.2. Methodology and limitations

The methodology guiding this analysis relies on mixed-methods research, using publicly available
qualitative and quantitative data and academic literature, expert interviews, and a survey undertaken by
the Expert Group in 2022. To identify appropriate measurement tools, the expert group has developed a
working definition of Al compute in addition to outlining key questions and further considerations.
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This research encountered limitations to conducting evidence-based analysis. First, standardised and
validated data on Al compute is not widely available. As such, this analysis is based on existing, publicly
available data and academic papers in addition to the expertise and input of the Expert Group. Second,
the market for Al compute is concentrated among a handful of hardware, software, and cloud computing
companies, which limits access to validated data and methodologies. National-level and customer-level
data on the supply and demand of Al compute is difficult to access and, in some cases, viewed as
commercially sensitive proprietary information. Collaboration with private and public sector actors to collect
data will be essential for advancing measurement work.

Third, this report primarily considers compute needs for ML, which is driving much of the demand for Al
compute. Other Al systems, such as symbolic Al systems, have been less compute-intensive since they
do not include a training process. Fourth, the report does not consider compute needs for processing and
cleaning data for Al model training, which occurs at earlier stages of Al training and use.

A survey targeting an audience with expertise or knowledge of Al compute was conducted to inform the
report (Annex D). There were 118 complete responses. Further analysis could benefit from the active
participation of government representatives, private sector entities, and academia in systematic data
collection efforts. This could be considered in the next phase of the Expert Group’s work.
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z Evolving trends in compute

2.1. Trends in supercomputer performance

Few economies have supercomputers ranking as top computing systems, with emerging
economies sparsely represented on the Top500 list

The Top500 list was created in 1993 to track the fastest supercomputers in the world primarily used for
science. The Top500 methodology does not define “supercomputer”, but instead uses a benchmark called
Linpack to rank systems qualifying for the list. This means any supercomputer, regardless of its
architecture, can make it into the Top500 list if it is able to solve a set of linear equations using floating
point arithmetic. In recent years, supercomputer systems have been increasingly updated to also run Al-
specific workloads, although the list does not distinguish supercomputers according to workload capacity
specialised for Al. Analysis of the Top500 list can serve as a proxy measure to observe emerging or
deepening compute divides between economies. As supercomputers increasingly are updated to also run
Al-specific workloads, gaps could be observed between those having resources to create complex Al
models leading to productivity gains, and those that do not.

The November 2022 Top500 list shows 34 economies with a “top supercomputer” according to the Top500
methodology (Figure 1). The highest concentration (32%) of top supercomputers is in the People’s
Republic of China (hereafter ‘China’), followed by the United States (25%), Germany (7%), Japan (6%),
France (5%) and the United Kingdom (3%) (Top500, 20225). The 17 countries on the list from the
European Union (EU27) make up a combined 21% of top supercomputers. Beyond this group, the rest of
the world makes up 12% of top supercomputers. Nearly 90% of top supercomputers were developed in
the last five years (Top500, 2022;5)). This highlights the speed with which hardware, infrastructure and
software are being developed and brought to market.

Figure 1. Number of top supercomputers by economy according to the Top500, November 2022
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Note: The Top500 is released twice a year authored by Jack Dongarra, Martin Meuer, Horst Simon, and Erich Strohmaier. Contributions to the
list are voluntary, posing methodological challenges. This Figure should be viewed as illustrative only and several caveats should be underlined.
It does not consider the capacity of different supercomputers but the count of supercomputers by economy, (i.e., it treats different
supercomputers as if they were the same, while significant variations in supercomputer capacity exist). It does not distinguish supercomputers
according to workload capacity specialised for Al.

Source: Figure produced using data from the November 2022 Top500 list (Top500, 2022;5)).
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Counting supercomputers does not give a full picture of national compute capacity as
some supercomputers are more powerful than others

A simple count of Top500 list does not reveal the full picture of which economies hold the greatest
supercomputer capacity, as this treats different supercomputers as if they were the same despite
significant variations in supercomputer speed and performance. The Top500 ranks differences between
supercomputer cores (processors), Rmax (a computer's maximum achieved performance), Rpeak (a
computer’s theoretical peak performance), and power (kW) using the Linpack benchmark. By analysing
the November 2022 Top500 list, some researchers estimate that the performance of supercomputers has
grown 630 times in terms of computational capacity since 20092 (Top500, 2022;s))

As of November 2022, the United States had five of the top 10 fastest ranked supercomputers on the list,
including the first (called Frontier), while China had two of the top 10, followed by Japan, Finland, and Italy
with one each. Analysis of the Top500 list by economy according to the sum of their maximum achieved
performance (Rmax, measured in tera floating-point operations per second, or TFLOPS), shows that the
United States has the highest share of total compute performance on the list (44%), followed by Japan
(13%) and China (11%) (Figure 2). This shows that counting supercomputers does not give a full picture
of national compute capacity, as some supercomputers are more powerful than others.

Figure 2. Top500 supercomputers by economy ranked by total Rmax, a computer’s maximum
achieved performance, November 2022
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Note: This figure should be taken only as a preliminary and directional proxy metric for national compute capacity with the caveats outlined in
Figure 1. In addition, as workloads cannot be run across multiple supercomputers, this measure should be viewed with limitations (e.g., 10
supercomputers that add up to the same sum of Rmax as a single supercomputer would not be equivalent).

Source: Figure produced using data from the November 2022 Top500 list (Top500, 2022;5))

2.2. Trends in compute for artificial intelligence

State-of-the-art Al systems increasingly depend on high-performance compute

Researchers estimate that the computational capabilities required to train modern ML systems, measured
in floating-point operations per second (FLOPS), has grown by hundreds of thousands of times since 2012
(OpenAl, 2018yy; Sevilla et al., 20222;), despite algorithmic and software improvements that reduce
computing power needs. This is likely driven by the increasing capabilities of large, compute-intensive Al
systems (Kaplan et al., 2020p); Hoffmann et al., 2022(7;). Research also notes that compute demands such
as processing power for Al systems has grown faster than hardware performance, particularly for deep-
learning applications like machine translation, object detection, and image classification (Thompson et al.,
2020g).
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Al compute is not well understood beyond specialised technical and policy communities

While awareness is growing of the importance of national policies for Al compute, its technical nature
makes it less understood outside specialised technical and policy communities. Many private-sector actors
have observed the growing reliance of Al systems on compute and made corresponding strategic
investments. Companies providing cloud computing services leverage existing infrastructure to meet
internal needs and serve customers, such as through infrastructure as a service (laaS), platform as a
service (PaaS), and software as a service (SaaS) cloud models. According to Eurostat, up to 41% of
enterprises in the EU used some type of cloud computing in 2021 (Eurostat, 20219;). Examples include
Google Cloud, Microsoft Azure, and Amazon Web Services (AWS), which provide cloud services enabling
access to software applications, servers, storage, compute, and more, including for Al training and
inference.

Securing specialised hardware for Al involves complex supply chains

Securing specialised infrastructure and hardware purpose-built for Al can be challenging due to complex
supply chains, as illustrated by bottlenecks in the semiconductor industry (Khan, 2021j10)). Integrated
circuits or computer chips made of semiconductors are the “brains of modern electronic equipment, storing
information and performing the logic operations that enable devices such as smartphones, computers, and
servers to operate” (OECD, 2019115). Any electronic device can have multiple integrated circuits fulfilling
specific functions, such as CPUs or chips specifically designed for power management, memory, graphics,
and more. Demands on semiconductor supply chains have grown in recent years, especially as digital and
Al-enabled technologies become more commonplace, such as Internet-of-Things (loT) devices, smart
energy grids, and electric vehicles (EVs). The semiconductor supply chain is also highly concentrated,
making it more vulnerable to shocks (OECD, 201911y).

The prominence of deep learning dramatically increased the size of machine learning
systems and their compute demands

Starting in about 2010, the prominence of deep learning dramatically increased the size of ML systems
and their compute demands (Figure 3). Satisfying this demand was partially enabled by transitioning from
general-purpose processors, such as Central Processing Units (CPUs), to processors that include
specialised hardware and support more efficient compute execution for certain operations (i.e., requiring
less energy and more computations per unit time). Today, ML systems are predominantly trained on
specialised processors that comprise hardware optimised for certain types of operations, such as Graphics
Processing Units (GPUSs), Tensor Processing Units (TPUs), Neural Processing Units (NPUs), and others.
Training ML systems on general-purpose hardware is less efficient. In recent years, interest has grown
significantly among governments and private sector actors in increasing and securing supply chains for
such specialised hardware (Khan, 2020yg)).
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Figure 3. Estimated compute used for training milestone ML systems between 1952-2022

Source: Figure produced and adapted from data included in original work by (Sevilla et al., 20221)

Industry is training an increasing number of large Al models compared to academia

A compute divide can emerge and worsen between the public and private sectors because, increasingly,
public sector entities do not have the resources to train cutting edge Al models. Industry, rather than
academia, is increasingly providing and using the compute capacity and specialised labour required for
state-of-the-art ML research and training large Al models (Figure 4) (Ahmed and Wahed, 2020p4;; Ganguli
et al., 2022113; Sevilla et al., 20222)). Several countries announced initiatives to increase the compute
available for research and academia, including the United States National Al Research Resource (NAIRR)
and Canada’s Digital Research Infrastructure Strategy, in addition to initiatives to take stock of compute
capacity and needs, including for researchers, such as the Canadian Digital Research Infrastructure Needs
Assessment and the United Kingdom’s 2022 Future of Compute review. Section 5 discusses additional
national Al initiatives related to compute.

Figure 4. Estimated compute used for training milestone ML systems classified by compute
provider (industry or academia) between 1980-2022

Note: According to Sevilla et al., 2022, “Sector is based on affiliation of the research paper authors.” and “If the authors had affiliations in both
Academia and Industry, the sector was labelled Industry because Industry-controlled computation is preferred in practice.”
Source: Figure produced and adapted from data included in original work by (Sevilla et al., 2022}
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3 Measuring Al compute: Definitions,
scoping considerations, and
measurement challenges

3.1. Al compute: What is it and what is it for?

This section outlines discussions on what artificial intelligence (Al) compute is and does. According to the
2019 OECD Recommendation of the Council on Al [OECD/LEGAL/0449], Al is defined as “a machine-
based system that can, for a given set of human-defined objectives, make predictions, recommendations,
or decisions influencing real or virtual environments”. While Al can be perceived as an intangible, technical
system, it is grounded in physical infrastructure and hardware, which is increasingly specialised for Al
development and use.

In its scoping work, the OECD.AI Expert Group on Al Compute and Climate (the Expert Group) proposed
a working definition of Al compute understandable to technical and policy communities (Box 2). The Expert
Group found that, while there is no standard definition of Al compute (Annex A), its core elements are
understood by technical Al experts, developers, and practitioners. The Expert Group thus proposes
defining Al compute as “one or more stacks of hardware and software used to support specialised Al
workloads and applications in an efficient manner” with requirements varying significantly according to the
user’s needs. This definition results from discussions by experts from the group and beyond and might be
further refined.

This report uses several terms related to Al compute. “Computing resources” or simply “compute” refer to
general-purpose compute, which is not necessarily purpose built for Al applications such as Al training or
inference. “Al computing resources” or “Al compute” refer to the physical hardware and software
infrastructure supporting Al workloads, including one or more “stacks” (layers) of hardware and software
used to support specialised Al workloads and applications in an efficient manner. “National Al compute
capacity” means the totality of resources that can be used to support Al development and use towards
achieving national policy goals.

Al compute covers a range of different technologies, from chips to data servers to cloud computing. Al
compute enables Al systems’ training, meaning the creation or selection of models/algorithms and their
calibration, and inferencing, or using the Al system to determine an output. This results in Al compute
requirements varying significantly according to user needs. Al compute can be located at and accessed in
several ways:

e Centrally in data centres, as infrastructure in physical facilities that house the computational
hardware, networking equipment, software, and data used for Al.

e Centrally in the cloud, as a service through public or private cloud networks.

e At the edge on decentralised devices, contained directly on stand-alone, end-use devices for
local Al inferencing, for instance on mobile, Internet-of-Things (IoT) devices.
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Box 2. Defining and scoping Al compute

Between April 2021 and April 2022, the Expert Group conducted eight meetings, interviews with more
than 25 experts, and a survey to inform work on defining and scoping Al compute:

‘Al computing resources (‘Al compute’) include one or more stacks of hardware and software used to
support specialised Al workloads and applications in an efficient manner.”

This definition highlights several properties central to a common understanding of Al compute:

e Al compute includes stacks of hardware and software. Al workloads are not performed by
one hardware or software component, but by one or more “stacks” (layers) of components. The
stacks include storage, memory, networking infrastructure, and more, designed to support Al-
specific workloads and applications that run mathematical calculations and process data at
scale. Efficient interaction between the hardware and software stacks is crucial for Al compute.

e Al compute stacks are specialised for Al workloads. Specialised hardware enables Al
training and use. For example, graphics processing units (GPUs) are purpose-built for highly
parallelised computing, in which many calculations are carried out simultaneously, making them
highly efficient for certain Al model types, such as deep learning. Al compute stacks are
becoming increasingly specialised, as Al applications, the number of parameters, and dataset
sizes continue to grow.

e Al compute requirements can vary significantly. Depending on the application, Al system
lifecycle stage, and size of the system, the Al compute needed can vary from large, high-
performance computing clusters or compute hyperscale cloud providers to smaller data-science
laptops and workstations. Consequently, compute requirements vary significantly based on
national Al plans and along the Al system lifecycle.

e Al compute supports Al workloads and applications in an efficient manner. Al compute
differs from general-purpose compute in that it can support Al workloads and applications in an
efficient manner, such as through optimised execution time and energy usage. This efficiency
is critical for conducting Al R&D, using large models and datasets.

Source: OECD.AI Expert Group on Al Compute and Climate

To understand the role of compute in Al systems, it is also important to understand the basic Al production
function, described by three enablers: algorithms, data, and compute (Figure 5). Compute is a substantial
component of Al systems and a driver of their improved capabilities over time. It is distinguished from data
and algorithms by being grounded in “stacks” (layers) of physical infrastructure and hardware, along with
software specialised for Al. Such stacks, made up of a variety of hardware and software components and
configurations, are part of why Al compute is difficult to quantify. While the compute needs of Al systems
and the specifications of hardware can be estimated, defining an “all-encompassing unit of Al compute”
has not been possible due its complexity.

Figure 5. Examples of Al compute enablers

Source: OECD.AI Expert Group on Al Compute and Climate
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In addition, compute often requires significant natural resources, including energy and mineral demands
for hardware production, and energy and water consumption during operation. This is explored in a parallel
report informed by the Expert Group, in collaboration with experts from the Responsible Al Working Group
of the Global Partnership on Al (GPAI) (OECD, 2022/14)).

Compute requirements can vary significantly for an Al system depending on its lifecycle stage. The OECD
defines an Al system lifecycle as encompassing the following phases: (1) plan and design; (2) collect and
process data; (3) build and use the model; (4) verify and validate the model; (5) deploy; and (6) operate
and monitor the system (OECD, 202215)). For machine learning (ML) systems, two lifecycle phases stand
out for their compute needs: training (building the Al system) and inferencing (operation).

Training an Al model such as a neural network — one of the most computationally intensive types of Al
models — involves determining the value of weights and biases (also referred to simply as “learning”) from
data presented to the system. This is a fundamental component of ML, regardless of whether supervised,
unsupervised, or reinforcement learning is used. Once a neural network is trained, it generates the output
through a computational process applying the trained weights against new input data. This is referred to
as inferencing (or “forward pass”). Once trained, a network can be distributed and deployed for application.
At this point, the network is mostly static: all computations and intermediate steps are defined, and only an
input (such as an image to classify) is necessary to carry out inferencing. Examples of inferencing include
looking up information using a search engine (e.g., a single Google search) or talking to a virtual personal
assistant (VPA) (e.g., Siri, Alexa, or others).

A complete training run is computationally more intensive than compute used to make a single inference
(Bengio, Courville and Goodfellow, 201616)). There are two primary reasons for this. First, training of the
weights is iterative: many cycles are required for a single input to obtain the desired result. Second (at
least for supervised learning), training data needs to be available to the compute system, which requires
memory capacity. Due to the combination of these two factors, training is thus usually a more complex
process in terms of memory and compute resources. Given the significant data and compute requirements,
training is more likely to be conducted on centralised, high-performance computers. In contrast, Al
deployment (i.e., running inferences) is more variable regarding Al compute requirements. Inferencing can
be conducted on computationally less powerful devices, such as smartphones, for instance at the edge
(e.g., using loT).

However, while a single training run is more computationally intensive than a single inference, the
inferencing stage overall typically requires more compute in an Al system’s lifecycle because ML systems
are usually trained only a few times during their development phase, whereas inferencing is executed
repeatedly every time a system is used during the lifetime of its deployment (Patterson et al., 202117
OECD, 202215;; Bengio, Courville and Goodfellow, 2016j16)).

The compute used for training versus inference can also be impacted by whether the model is using
technigues such as transfer learning or federated learning. Transfer learning allows for some efficiency
gains through the “re-training” of models. For example, a model trained for image recognition generally
can be re-trained to recognise specific images, for instance images of cats. This can enable efficiency as
pre-trained models can be repurposed for specific purposes. Another example is federated learning, a ML
technique that conducts training across multiple decentralised servers or edge devices holding specific
data (e.g., using loT), without exchanging them, which can be used to train models more efficiently in some
cases. Both are examples of how measuring the relationship between compute needed for training and
inference can be dynamic and depend on the model and task at hand.

3.2. Measurement challenges
Measuring Al compute capacity and needs is particularly challenging. At present, very few tools and

indicators exist to measure Al compute. Literature on Al compute typically focuses on the performance

OECD DIGITAL ECONOMY PAPERS © OECD 2023



A BLUEPRINT FOR BUILDING NATIONAL COMPUTE CAPACITY FOR ARTIFICIAL INTELLIGENCE | 23

measurement of compute systems, such as application performance benchmarks like MLPerf or
throughput benchmarks like the Top500 list. Other methods use the number of mathematical calculations
a computer can complete in a second (floating-point operations per second, or FLOPS) as an indicator of
compute performance. While measures of compute performance are useful, they are not a complete
indicator of collective national compute capacity nor of a country’s Al compute needs.

What qualifies as “domestic” Al compute may vary by country, for example being subject to domestic laws
and regulations and physically located within a national jurisdiction. Policy makers will need to consider
whether Al compute can be classified as domestic if it is (1) owned and operated by a non-domestic private
or public sector actor and/or (2) physically located in another country. Aggregating the performance of
individual Al systems within a country could be one way to calculate national Al compute capacity, but this
approach has limitations. Commonly used benchmarks are narrowly formulated to define performance
under very strict conditions (e.g., the Linpack benchmark) and might not be applicable to all Al systems in
a country. Another approach is to count the number of discrete Al systems and group them by “class” of
performance, such as leadership-class Al systems and centre-class Al systems. This might provide less-
specific results but is more user-friendly.

Another measurement challenge is that compute can be general-purpose, meaning that compute
infrastructure can be used for Al workloads and non-Al workloads, such as mathematical and scientific
modelling and other compute needs not directly related to Al. This challenge is particularly relevant to
hardware and infrastructure as data centres and high-performance computing (HPC) infrastructure can
have a variety of applications in addition to Al. Few estimates of Al-specific workloads exist, with these
rarely differentiating between Al training and use. According to one study by Google, its overall energy use
for ML workloads consistently represented less than 15% of total energy use over 2019-21 (Patterson,
20225g)). Other estimates use customer spending to approximate the percentage of compute used
between Al training and inference workloads. For example, a large cloud compute provider?® estimates that
its enterprise customers spend 7-10% of their total compute infrastructure expenditure on supporting Al
and ML applications, broken down to 3-4.5% for training and 4-4.5% for inference. This includes about
60% spent on compute platforms featuring hardware accelerators like GPUs and about 40% spent on
CPU-based compute platforms. Such numbers can inform estimates of Al-specific use while shedding light
on how impacts differ according to whether compute is used for Al training or inference.

The Expert Group focuses on creating a measurement framework for Al compute at the national level,
which also poses specific challenges. Countries participate in a variety of international and regional
initiatives like research collaborations on HPC, which complicates assigning Al compute capacity to
individual countries. National capacity accessed through the cloud raises the same issue as compute
accessed domestically through the cloud could rely on servers and data centres located across borders
and in different jurisdictions.

Determining skills and job titles related to Al compute activities is also a challenge. The 2008 International
Standard Classification of Occupations (ISCO-08) and many national occupation classifications do not
distinguish Al compute specialised occupations from general software and ICT development,
manufacturing, and maintenance jobs (United States Census Bureau, 2022); International Labour
Organization, 201620]). This makes international comparability challenging, especially when Al compute
related job titles are poorly defined. For example, a “data scientist” job posting might ask for skills in Al
modelling, training optimisation for hardware, big data, and various Al domains (e.g., NLP or computer
vision). These skills overlap with job titles like “machine learning specialist’ and “data engineer”, with some
being even more specific, like “computer vision specialist”. The skills listed in Al-related job postings also
differ by country due to differing national technology environments and demands for experience, such as
managerial skills (Samek, Squicciarini and Cammeraat, 2021 21;).
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3.3. Insights from preliminary survey results

The preliminary results of the public survey on Al compute launched by the Expert Group highlight some
of these measurement challenges (Annex D). Of respondents, 27% reported that they measure Al compute
capacity, 22% reported that they use some metrics but not regularly, and 31% reported that they do not
measure how much Al compute they have and do not have metrics and measurement tools in place (Figure
D.5). In contrast, 20% reported that they did not have sufficient information to answer this question and
that they did not know whether they measure Al compute. Furthermore, 52% of respondents reported
challenges accessing sufficient Al compute, compared to 30% reporting no challenges and 18% reporting
that they did not know whether they had challenges (Figure D.6).

When asked about the top barriers or challenges to accessing Al compute, 44% of respondents cited the
cost of Al compute, followed by expertise (20%), availability (13%), and suitability (5%) (Figure D.7). This
highlights cost as an important factor for planning effective use of Al compute and access. When asked
about the percentage of their organisation’s total annual costs spent on Al compute, 37% reported that
they did not know, 5% reported no annual costs spent on Al compute, 26% reported 10-40% of costs, and
3% reported that Al compute costs were 50% or more of annual costs (Figure D.8).
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4 Blueprint for developing a national
Al compute plan

4.1. Aligning compute capacity with national Al strategies

Many countries have produced national Al strategies without explicit consideration of whether they have
the corresponding infrastructure, hardware, and skilled labour to execute such plans and achieve national
artificial intelligence (Al) policy goals. To address this gap, the Expert Group developed considerations to
help policy makers align national compute capacity and future investments with national Al strategies.
These considerations are not exhaustive and vary according to national contexts and Al needs. They are
the outcome of extensive discussions with Expert Group members and offer an overview of the current
thinking on how to measure and plan national Al compute capacity for current and future needs.

Policy makers should consider Al compute investments relative to national policy objectives, including
public-sector budget allocations and private-sector investments. Policy makers should recognise that there
are different ways to boost domestic Al compute capacity and the most resilient approach will depend on
a country’s context and needs. Such an approach could include investments in nationally owned or
sponsored Al supercomputers and/or strategic partnerships with global and regional commercial cloud
providers. But valuable Al compute can also be small, especially for students and junior researchers. Policy
makers can keep in mind that even a data science laptop or workstation, which do not require the overhead
costs of a data centre, can be a powerful vehicle to Al innovation, broadening access and helping to close
compute divides.

Policy makers also should consider how public- and private-sector investments in domestic Al compute
capacity can advance different types of policy objectives. For example, scaling up Al compute involves
investment in a smaller number of larger Al systems for training the largest and most complex Al models
(e.g., supporting advances in domains such as natural-language processing (NLP), precision medicine,
and autonomous vehicle development). Alternately, scaling out Al compute involves investment in a larger
number of smaller Al systems to enable Al R&D projects such as workforce training and student education
(e.g., where the goal is more about access than breakthroughs). The scaling out approach is commonly
seen in countries such as Thailand and Indonesia, where multiple smaller Al clusters are installed in
universities with government support to broaden access. These examples of Al-related policy goals and
their implications for Al compute are summarised below:

e Scale-up Al policy develops and uses Al to achieve cutting-edge innovation in specific
domains (e.g., health, transport, agriculture) to solve complex problems and increase or
maintain a country’s competitiveness in that domain.

e Scale-out Al policy promotes Al diffusion across sectors of the economy to unlock productivity
gains and innovation at scale. It typically promotes inclusion and aims to produce Al benefits
that are widely shared.

Policy makers might wish to conduct a needs assessment by developing an Al compute country profile.
Some initial contextual factors and country profiles are presented in Box 3.
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Box 3. Sample considerations for national Al compute profiles

Preliminary contextual factors to consider:

e Economic development level

e Telecommunications network maturity

e National Al strategies and private sector Al needs (e.g., quality and availability of infrastructure)
e Level of digital adoption (e.qg., in private and public sectors)

¢ Availability of Al inputs (e.g., data maturity, prevalence of Al-ready datasets)

e Workforce Al literacy (e.g., in private and public sectors)

e Geography and access to supply chains (e.g., space and capacity to build data centres and
HPC clusters within them)

Country profile #1: Emerging economy

A policy maker in an emerging economy that has a mature telecommunications system, limited in-
country data centre capacity, and a low level of science, technology, engineering, and math (STEM)
education might wish to:

e Understand how to best leverage the global supply of Al compute within the country

e Explore how partnerships and capacity-building programs can build infrastructure, help train the
workforce, and grow the level of Al literacy (e.g., using STEM education)

¢ Plan a compute strategy to build a baseline of compute capacity to stimulate economic growth
Country profile #2: Advanced economy

A policy maker in an advanced economy with a mature telecommunications system, a large amount of
in-country data centre capacity (including some local hyperscale data centres), and a high level of
STEM education might wish to:

e Understand options to invest in Al compute to utilise the existing high level of STEM education
e Analyse how accessible existing Al compute is for local businesses

e Plan a compute strategy to double down on existing investments and strive for long-term gains
in economic competitiveness

Note: This offers illustrative thoughts on elements that can impact national Al compute profiles. This framework could be further developed
and adapted to fit specific national needs and contexts.
Source: OECD.AI Expert Group on Al Compute and Climate

4.2. Considerations for a national Al compute plan

This section offers a blueprint for the creation of a national Al compute plan and describes considerations
for national policy makers and practitioners (Figure 6). Alongside implementation of a national Al compute
plan, policy makers should develop indicators and metrics to evaluate its success and inform future
evidence-based policy. It can also be used as a basis for policy makers to develop measurement and
evaluation frameworks and begin collecting data on Al compute. The Expert Group proposes this blueprint
with accompanying questions for policy makers to tailor and guide Al compute capacity investments to
meet national Al ecosystem needs. Each plan component and consideration is described in more detail
below.
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A national Al compute plan should align with existing national Al strategies and centre around three
fundamental questions:

¢ How much Al compute does the country have?

e How much Al compute does the country need? Is current domestic Al compute capacity
sufficient to support national Al strategy objectives?

e How does it compare to other countries?

To answer these questions, policy makers can consider three overarching categories as part of a national
Al compute plan — capacity, effectiveness, and resilience — which include subcomponents and can be used
to develop metrics and indicators for evaluation (Figure 6). Each of these components are presented in
more detail below along with questions for policy makers to consider.

Figure 6. Blueprint for national Al compute plans

Source: OECD.AI Expert Group on Al Compute and Climate
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Capacity

Measuring a country’s national capacity for Al compute is challenging. It involves developing baseline
supply and demand measures and forecasting to ensure investments reflect future needs and the fast-
changing pace of Al (Figure 7).

Figure 7. Policy objectives and considerations for Al compute capacity

Source: OECD.AI Expert Group on Al Compute and Climate

To help policy makers address these measurement challenges, the Expert Group developed a framework
for measuring current and future national Al compute capacity and ensuring ongoing capacity monitoring
(Figure 8). A preliminary list of measurement indicators under discussion is proposed in Annex C, which
map to the components of the blueprint.

1) Measuring current Al compute capacity and needs by taking stock of national supply and
demand for Al compute

2) Estimating future Al compute capacity and needs by anticipating advances in technical
compute capabilities against future demands and ambitions in national Al plans

3) Ongoing monitoring of Al compute supply and demand by maintaining supply and tracking
demand for national Al compute over time

Figure 8. Framework for measuring national Al compute capacity and ensuring ongoing monitoring

Note: This is a preliminary framework which could continue to evolve as the Expert Group continues its work.
Source: OECD.AI Expert Group on Al Compute and Climate
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Measuring current Al compute capacity and needs

Current supply: How much do we have?

A first step in measuring a country’s Al compute capacity is taking stock of the Al compute supply currently
available in that country. This could help answer the question, “How much do we have?” The following
questions can be relevant to measuring compute supply:

How much general-purpose compute exists nationally and how much can be used for Al? How
relevant is the compute capacity for Al?

How much Al compute supply exists across central compute (i.e., on-premise HPC clusters), cloud
compute, and edge compute (i.e., connected devices) resources?

What is the landscape of Al compute providers in a country? What is the breakdown by private,
public and government-owned providers? Are there partnerships with non-domestic cloud
providers?

What should be counted as national Al compute capacity considering the various locations of Al
compute, such as cloud compute servers in another country?

Is there a difference between how much Al compute supply exists and how much is available?
What are the key factors influencing the availability of the supply of Al compute?

How do cost considerations impact the supply of Al compute?

Current demand: How much do we need?

In addition to estimating the national supply of Al compute, estimates of the compute demand by various
actors and types of Al systems are important to inform projects and decisions, especially considering the
rapid technological advances of Al in recent years. The following questions can be relevant to assessing
compute demand of Al systems:

Which actors (e.g., private, public, government sectors) are using and need Al compute?

How do Al compute needs differ across industry and research sectors? What specific needs for
specialised compute do specific sectors have?

How do Al compute needs differ across types of Al, such as symbolic Al or ML?

How do Al compute needs differ across Al applications such as NLP, speech recognition, computer
vision, generation of recommendations, generative Al and other applications?

How do compute needs differ along the Al system lifecycle (e.g., from training to inferencing)?
How does demand for specialised Al compute skills vary by sector?
How do cost considerations impact the demand for Al compute?

Measuring future Al compute capacity and needs

Future supply: How will compute capabilities change in the future?

Growth trends of Al compute hardware, software, and other resources impact supply projections. The
following questions can help estimate future supply of Al compute based on technical advances:

What do technologists, foresight specialists, and others forecast as the next advances in computing
hardware and infrastructure for Al?

How are Al compute technical capabilities expected to evolve with the introduction of more efficient
hardware (e.g., quantum computing and networks like 5G, 6G, etc.), software and other compute
resources?
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e How are Al compute technical advances expected to compliment and interact with existing national
infrastructure for Al compute?

e Which skills might be needed to effectively leverage advances in Al compute?

Future demand: How will compute demand change in the future?

Few national Al strategies and associated action plans anticipate development in demand for Al compute.
Forecasting Al compute demand can be challenging as Al applications grow as a general-purpose
technology. The following questions can help policy makers assess future demand for Al compute as part
of national Al ambitions:

e Which emerging sectors or Al applications requiring significant or specialised compute could be of
national economic or scientific importance?

e How might compute demand for different types of Al (e.g., symbolic Al or ML) evolve?

Capacity monitoring (ongoing)

Monitoring demand and maintaining supply for Al compute is key as Al compute sufficiency requires
constant re-evaluation considering new applications and investments. The following questions could be
considered:

e Which strategic investments could secure adequate ongoing supply of compute for national Al
needs?

e Is current national Al compute capacity dynamic enough to adapt to new technological advances
and applications? What share of current systems can be easily and affordably upgraded or
extended?

e What share of current Al compute resources could become outdated or obsolete?

¢ How resilient is current national Al compute capacity to supply-side shocks (i.e., fragility of supply
chains), natural disasters, and geopolitical considerations?

Effectiveness
In addition to taking stock of the availability and use of Al compute in a country, it is important to consider
whether a compute divide exists due to ineffective use of compute. For example, a lack of skilled labour,

innovation and R&D ecosystems, enabling laws and regulations, as well as high costs and other barriers
to accessing Al compute can cause even state-of-the-art infrastructure to be used ineffectively.

Figure 9. Policy objectives and considerations for Al compute effectiveness

Source: OECD.AI Expert Group on Al Compute and Climate
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People (skills, training, diversity)

Specialised skills, often engineers or those with technical hardware expertise, are needed to use Al
compute resources effectively. Preliminary results from the survey on Al compute (Annex D) highlight this
point. Most survey respondents reported at least one full-time equivalent (FTE) worker dedicated to the
management and use of Al computing resources (Figure D.4), and over 10% of respondents reported 250
or more FTE workers dedicated to this work. Only 12% of respondents reported zero FTE workers, and
around 16% reported that they did not know.

With the increasing demand of Al workloads, skilled labour might be a bottleneck to deployment of Al
compute. Expertise to ensure that the configuration of hardware and software stack(s) is efficiently
deployed and easy to use is critical to enabling effective compute capacity. Perspectives from diverse
disciplines and backgrounds are also critical to close compute divides between developed and emerging
economies, and between public, academic, and private sector organisations. The Expert Group is
examining these challenges and how skills for Al compute differ from Al skills more broadly. The following
questions could be considered:

¢ Isthere sufficient supply of talent nationally with the skills to enable the effective use of Al compute?

e What skills are required for the effective use of Al compute? How do these differ from Al skills in
general?

e What is the demand for and prevalence of these skills nationally? Are there skills shortages? Can
countries attract these skills?

e Are perspectives from diverse disciplines and backgrounds being considered in the planning and
implementation of national Al compute plans?

e Are domestic Al education and training programs promoting trustworthy Al principles in learning
about effectively using Al compute?
Policy (law, regulation, strategy)

National policy environments that facilitate the effective use of compute infrastructure play a foundational
role in successful Al compute plans. The laws, regulations, and strategies surrounding governance of and
access to compute are critical to its effective use. Countries and regions take different approaches to
governing the digital infrastructure required for Al development and use, from national HPC or cloud
resource initiatives, to targeted hiring and skills policies. The following questions could be considered:

e What laws and regulations govern national compute capacity and are they fit to serve today’s
innovation economy, national context, and the needs of Al systems?

e Are there laws and regulations that create red tape and other undue administrative burdens on
users and providers of Al compute? How does this vary between the public and private sectors?

e Have policies that involve partnership with non-domestic cloud providers been considered?

e Have policies been considered to subsidise high-powered data-science laptops for Al developers,
researchers, and students to close divides between private- and public-sector compute availability?

e What can be learned from countries that leverage Al compute capacity to produce breakthroughs
and increase domestic competitiveness?
Innovation (Research and Development)

Research and development (R&D) support innovation and advances in Al compute infrastructure and stack
architectures, enabling significant efficiency gains and breakthroughs in Al discoveries. Such research and
innovation drive technology advances that can influence the investment decisions countries make
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regarding compute infrastructure and hardware to compete in a global digital economy. The following
questions could be considered:

What compute technology advancements impacted the domestic Al ecosystem in the last decade?

Which types of companies (i.e., private or public sector) fund and conduct R&D for breakthroughs
in Al compute technology?

How do new technologies become available and/or are they open source?

How are innovation and R&D advances changing the skills needed to adopt new technologies? Do
national training programs require updating?

Access (cost, usage rights)

Ways of accessing compute include renting cloud compute from private companies, accessing compute
directly on-premises through data centres, or accessing compute through research collaborations and
public-private partnerships. Barriers to access include lack of awareness, service reliability, and expertise,
as well as high cost. Who owns the compute capacity can also impact the ways and ease with which
capacity is accessed according to usage rights. The following questions could be considered:

How much Al compute is accessible across public, private, and academic ownership models? Can
Al be owned, operated, and made accessible by governments, universities, or the private sector,
for instance by renting cloud compute?

How do compute needs differ according to varying means of access and usage rights? Is there
increasing demand for access to cloud computing resources?

How can compute capacity be measured in the cloud, given access models that cross jurisdictions?

How do usage rights impede access to compute capacity for different groups (i.e., public sector,
universities, research institutes, private sector companies)?

How do cost considerations impact the supply of Al compute? Is cost a barrier to investment?

Resilience

Resilience considerations include concerns related to security and sovereignty, such as location,
ownership and supply chains, and to environmental sustainability.

Figure 10. Policy objectives and considerations for Al compute resilience

Source: OECD.AI Expert Group on Al Compute and Climate
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Security and sovereignty (location, ownership, supply chains)

General sovereignty and security

A country’s Al compute capacity can be located domestically or internationally, such as in a data centre
located within the country’s borders or one abroad. Such Al compute capacity could be considered
"sovereign" if it is subject to domestic laws and regulations. Whether investments improve Al compute
capacity domestically or abroad depends on national goals and could be linked to national security and
privacy objectives, among others. Countries could also have infrastructure reliability and cybersecurity
concerns, including whether national electricity grids have sufficient capacity to support desired national
Al compute plans and whether Al compute infrastructure is secure from malicious activities like
cyberattacks. The following questions could be considered:

e How much and what type of Al compute capacity sits within a country’s borders and is governed
by national laws versus in other jurisdictions?

e What are the trade-offs in sourcing Al compute domestically or abroad?

e How can domestic Al compute be distinguished from internationally available compute, for instance
if accessed through commercial cloud providers?

¢ How do national security considerations and privacy objectives intersect with Al compute plans?

Location in the network

Al compute can be located at various points in a network, for example centrally (i.e., on-premises at data
centres), or at the edge (i.e., through connected mobile edge devices). Location usually determines the
proximity of the user to the data and compute. Al compute at the edge is close to the user but might be
less efficient as devices are decentralised and often not specialised for Al. In contrast, central compute
locations tend to be further from users but offer greater capacity and capabilities than edge devices. The
following questions could be considered:

e Where is Al compute capacity located in country networks — primarily in data centres, at the edge,
or a mix of both?

¢ How have trends in where Al compute is located changed over time and what does this reveal
about changing demand for Al compute?

e How can central Al compute be measured in the network? Is it possible to measure all on-premise
data centres with Al workloads in a country?

e How can Al compute capacity at the edge be measured, given its decentralised nature and the
multiplicity of devices such as personal mobile devices, laptop computers, and 10T devices? How
can this support efficiency objectives?

Ownership

Compute for Al can be privately or publicly owned, for instance through commercial cloud providers offering
compute services, and HPC resources located and owned at publicly funded and publicly accessible
institutions such as universities or academic centres. In recent years, governments have explored
investments in public compute resources, for example through public research cloud initiatives (Zhang
et al., 202212)) and by bringing together expert groups, such as the United States National Al Research
Resource (NAIRR) task force, to inform policy. The following questions could be considered:

e How does Al compute ownership differ between private and public (i.e., academic and research)
provided resources?
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e Who are the primary providers of Al compute in the country and what are the ownership models
(e.g., service providers, renting capacity, building infrastructure, hardware providers, etc.)?

e How does access to Al compute vary depending on ownership? Are there barriers associated with
each, such as cost, expertise, location etc.?

Supply chains

The Al compute supply chain comprises stages such as the extraction of natural resources, hardware
manufacturing and processing (i.e., in semiconductor facilities), transportation, hardware assembly for
availability in the cloud, and more. Countries increasingly focus on securing supply chains to avoid
production bottlenecks and shortages. The following questions could be considered:

e How do the parts of Al compute supply chains relate to a particular national context?

e How robust are these supply chains? Is there sufficient contingency in global or domestic markets
to source resources in the event of global shocks?

Sustainability (efficiency, environmental impacts)

Training and using large Al systems require significant compute resources, leading to environmental
impacts: energy and water use, carbon emissions, e-waste, and natural resource extraction like rare
mineral mining. This is a concern especially considering the rapidly growing compute needs of Al systems.
Several good practices for sustainable Al exist, such as using pre-trained models where appropriate and
powering data centres with renewable energy. Efficiency gains should be explored for compute hardware
and software, including algorithms. For example, researchers at the Massachusetts Institute of Technology
(MIT) and start-up MosaicML are training neural networks up to seven times faster by configuring Al
algorithms to learn more efficiently. This topic is further explored in a 2022 report informed by the Expert
Group (OECD, 2022j147). The following questions could be considered:

e How resource-intensive is existing Al compute capacity (e.g., energy, water, carbon emissions
etc.)? What portion of natural resource use is attributed to Al specifically, compared to ICTs in
general?

e Can the national energy grid support future Al compute needs in a sustainable way? Have policies
been considered that set design standards to minimise energy use and environmental impacts?

e How can existing lifecycle impact assessments and standards be leveraged to measure
environmental impacts of Al compute and applications?

e What efficiency gains could be achieved by applying infrastructure and hardware best-practices
and changes at the Al model level?

Additional considerations

Depending on their national Al context and level of technology adoption, policy makers might consider
additional factors, such as the type of Al model, Al applications, stage of the Al system lifecycle, and
access to data. These considerations can be integrated into Al compute plans to fit varying national
contexts.

Al model type

Al can be enabled by different methods, such as symbolic Al methods or ML — the most popular method
today for creating Al which includes sub-methods such as deep learning. Hybrid options are also possible.

e How do different types of Al methods (e.g., machine learning, symbolic Al, and hybrid Al) impact
Al compute needs?
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Al applications

Al can require specialised compute depending on its application, for instance whether an Al is being used
for NLP, computer vision, robotics, the generation of recommendations, optimisation, or other applications.

e How do Al applications impact Al compute needs?

Al system lifecycle stage

The Al system lifecycle encompasses the following phases: (1) plan and design; (2) collect and process
data; (3) build and use the model; (4) verify and validate the model; (5) deploy; and (6) operate and monitor
the system (OECD, 2022;5). Compute needs change with the phases of the Al system lifecycle, notably
depending on whether an Al model is being trained or used for inferencing.

e How do domestic and sectoral Al compute needs differ along the Al system lifecycle (e.g., for
training or inferencing)?

Data access and processing

Access to data for Al training and use, and the compute capacity needed to process and clean data for Al
model training are key considerations. Along with algorithms and compute, data is an enabler of Al. Data
localisation rules might require data to be physically stored in-country, potentially creating challenges for
its use to train and deploy Al models. While the present paper focuses on Al compute, ensuring access to
sufficient data and safeguards for its responsible use are essential, as articulated in the OECD Al
Principles, and is the subject of separate OECD work (OECD, 2019(3;; OECD, 2015p23)).

e What is the impact of sovereignty considerations and data localisation requirements on whether
data is physically stored in-country (or in-region in the case of the European Union)?

e What challenges exist related to the compute needs of data for Al training and deployment?

¢ How much compute capacity is required to clean and prepare data for Al training or deployment?
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5 Al compute in national policy
initiatives

Countries and regions take varying approaches to providing the digital infrastructure and access required
for the development and use of artificial intelligence (Al) (Figure 1). Different national goals for Al lead to
different investment strategies. From building domestic infrastructure, to investments in the cloud,
countries consider compute infrastructure investments on a case-by-case basis corresponding to national
objectives. National Al initiatives related to computing resources often focus on general research and
science infrastructure rather than Al specifically. While several countries have broader national HPC or
cloud resources initiatives, few national Al plans have specifically targeted initiatives for assessing national
Al compute capacity and needs.

This section is informed the OECD Al Policy Observatory, which includes a database of over 800 Al policy
initiatives from more than 69 countries and territories, and the European Union. The database collects
gualitative and quantitative data on national trends in Al policy. It includes a taxonomy for classifying policy
initiatives according to four themes: (1) governance; (2) financial support; (3) Al enablers and other
incentives; and (4) guidance and regulation (OECD, 2022217). In 2021, a new category was added called
“Al computing and research infrastructure” to collect information on related national Al initiatives. Al
compute data and analysis on the OECD Al Policy Observatory will expand as awareness grows around
including Al compute considerations in national plans.

Figure 1. Digital infrastructure for Al

Note: This stylised figure from the OECD 2021 report on the State of Implementation of the OECD Al Principles identifies a selection of Al policy
instruments used by countries to implement OECD Al Principle 2.2 on fostering a digital ecosystem for Al.
Source: (OECD, 2021p2s))
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5.1. High-performance computing initiatives

HPC initiatives can be found across many countries and regions. Their focus is often on supporting a range
of scientific and mathematical applications in addition to Al-specific initiatives.

Canada’s Pan-Canadian Artificial Intelligence Strategy, launched in 2017 and renewed in 2021, leverages
a national network of Al research institutes and supports the acquisition of HPC capacity dedicated for Al
researchers. Canada's Advanced Research Computing Expansion Program launched in 2019 provides an
increase in general national HPC capacity through Canada's supercomputing platform through the
University of Victoria, Simon Fraser University, University of Waterloo, University of Toronto and McGill
University, and coordinated by the Digital Research Alliance of Canada. In 2020, the first Canadian Digital
Research Infrastructure Needs Assessment was launched to identify and address future digital research
infrastructure and service needs (Digital Research Alliance of Canada, 20202q)).

Chile established a National Laboratory for High Performance Computing to consolidate a national facility
for HPC to help meet the national demand for computing resources from the scientific community. It offers
services for both basic and applied research, with an emphasis on industrial applications (National
Laboratory for High Performance Computing - Chile, n.d.j27).

Colombia’s Ministry of Information Technology and Communications is establishing the Colombian
Supercomputing Network (Analitic4), accessible to public- and private-sector actors (Ministerio de
Tecnologias de la Informacion y las Comunicaciones, 20212g)).

In France, the Grand Equipement National De Calcul Intensif created in 2007 is charged with providing
HPC storage and services to researchers, academia, and industry for large-scale mathematical
simulations, data processing, science, and Al applications (GENCI, n.d.29)).

Germany'’s Al Strategy and HPC-Programme of the Federal Ministry for Education and Research aim to
build national compute capacity through several national supercomputing centres, such as expanding the
Gauss Centre for Supercomputing to exascale capability (Federal Government of Germany, 2020(30)).

In Japan, the RIKEN Centre for Computational Science and Fujitsu launched a top-ranked supercomputer
named Fugaku in 2020. The National Institute of Advanced Industrial Science and Technology (AIST)
develops and operates open Al computing infrastructure, including an initiative named Al Bridging Cloud
Infrastructure to accelerate collaborative Al R&D between industry, academia, and the government
(OECD, 20213y).

Korea announced their National High-Performance Computing Innovation Strategy for the Quantum Jump
of the Fourth Industrial Revolution in May 2021. It consists of a 10-year medium- to long-term plan to close
the gap with leading countries and create growth opportunities in line with domestic and global technology
shifts, such as the transition to exascale computing, strengthening technological security, and increasing
domestic demand.

Slovenia’s National Supercomputing Network (SLING) provides national capacity for HPC compute to
university and industry researchers, providing access to international and domestic cluster-based storage
and compute capabilities (SLING, n.d.[31). The 2020-25 Slovenian national Al strategy recognises compute
infrastructure, including HPC and storage, as key. In 2017, the State Centre for Data Management and
Storage was created to provide government offices with access to a State Cloud (Republic of Slovenia,
202132)).

In Spain, the Barcelona Supercomputing Centre established in 2004 provides HPC services to scientists
and industry, with a pre-exascale system to be operational in 2023 and is a European leader in computer
architectures research and HPC for Al applications (Barcelona Supercomputing Centre, 202233)).

In October 2020, the United Kingdom announced the launch of its most powerful supercomputer for use
by healthcare researchers to tackle pressing medical challenges (OECD, 2021ps). In 2022, the United
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Kingdom launched a review of its digital research infrastructure needs to support the development and use
of Al, examining the provision of compute, data access, and talent, which will inform its ongoing national
Al strategy (The Alan Turing Institute, 202234)).

In 2022, the United States Department of Energy launched the Frontier supercomputer as one of the
world’s most powerful HPCs for Al applications (US Department of Energy, 20193s)). The National Science
Foundation (NSF) invests significantly in next-generation Al R&D supercomputers, such as Frontera,
deployed in June 2019 (National Science Foundation, 2019z¢)), and provides programs for access to Al
compute through the National Al Research Institutes (National Science Foundation, 2022;37;). The National
Aeronautics and Space Administration (NASA) has a high-end computing programme and is augmenting
its Pleiades supercomputer with new nodes specifically designed for machine-learning (ML) Al workloads
(OECD, 202131). The United States National Al Initiative Act of 2020 plans to make world-class computing
resources and datasets available to researchers across the country through the forthcoming United States
National Al Research Resource (NAIRR).

India’s Centre of Excellence in Artificial Intelligence is developing the National Artificial Intelligence
Resource Portal, which will offer a web-based system to search and browse Al resources, including training
and a cloud-based compute platform (Centre for Excellence in Artificial Intelligence, 2022zg)).

In Serbia, plans were announced to establish a National Platform for Al, including high-performance
supercomputing capacity, accessible available upon request to certain institutions and the private sector
(The Government of the Republic of Serbia, 2020;z9)).

In Thailand, the National Science and Technology Development Agency (NSTDA) created Thailand’s
Supercomputer Centre (ThaiSC) in 2019 to provide national-scale supercomputing resources for R&D
located in the Thailand Science Park (ThaiSC, 202235)).

In Europe, the European High-Performance Computing Joint Undertaking (EuroHPC) was established in
2018 to share computing resources and coordinate efforts among EU countries and partners, with a 2021-
27 budget of EUR 7 billion (EuroHPC, 202222)). It aims to develop peta and pre-exa-scale supercomputing
capacities, and data infrastructure to support European scientific and industrial research and innovation
for scientific, industrial, and public users, including for Al (OECD, 202112;; EuroHPC, 202211)). Launched
in 2021, the EU-ASEAN High-Performance Computing Virtual School hosted by ThaiSC brings together
experts, students, and researchers from Europe and ASEAN member states to share best practices and
learn HPC design and programming skills (The ASEAN Secretariat, 202123)).

5.2. Cloud-based services

Initiatives exist to address other important enablers for Al compute, including data processing, broadband
networks, and cloud-based services. The OECD Going Digital Toolkit defines cloud computing as “ICT
services over the Internet to access servers, storage, network components and software applications”
(OECD Going Digital Toolkit, 202143)).

In 2019, France and Germany launched GAIA-X, an EU cloud-based initiative that aims to establish an
interoperable data exchange through which business and research partners can share data and access
services at scale, including for Al (Gaia-X, n.d.j4).

Cloud computing and connectivity initiatives can be found across Europe for a variety of uses. Since 2016,
the European Commission has been developing a blueprint for cloud-based services and data
infrastructure, including the European Data Infrastructure and the European Open Science Cloud, which
will deploy high-bandwidth networks, large scale storage, and supercomputer capacity for academic and
industry partners (data.europa.eu, 2016s)).
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5.3. Supply chain initiatives

In addition to national and regional investments in HPC and cloud service capabilities, initiatives are
increasingly being launched to secure upstream manufacturing of components for Al compute, such as
securing semiconductor supply chains:

In 2020, Korea launched its Al Semiconductor Industry Development Strategy, a USD 1 billion
cross-ministerial project. As part of the Digital Korea Strategy launched in 2022, Korea is planning
a K-Cloud Project, which operates a cloud data centre established with domestically developed
semiconductors to promote Al infrastructure and services (Ministry of Science and ICT, n.d.s)).

Aligned with other European initiatives, such as the European Chips Act (below), Spain approved
a strategic plan of more than EUR 12 billion to develop the design and production capacities of the
Spanish microelectronics and semiconductor industry, covering the value chain from design to chip
manufacturing.

The United States established the Creating Helpful Incentives to Produce Semiconductors
(CHIPS) for America Act, which offers USD 52 billion for semiconductor manufacturing, supply
chain and R&D investments (Congress.Gov, 202047)).

The European Union announced the European Chips Act to incentivise over EUR 15 billion in
public and private sector investments (European Commission, 20194g)).
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ﬁ Gap analysis and preliminary
findings

Making informed and evidence-based decisions to plan national compute capacity for the fast-changing
needs of Al systems can be challenging. A suite of indicators and proxies will be needed to measure
national Al compute capacity and preparedness to meet Al goals. This section identifies gaps in existing
measurement tools and discusses preliminary findings.

6.1. Al policy initiatives need to take Al compute capacity into account

At present, national Al policy initiatives do not include detailed measures of Al compute capacity and
corresponding national needs, focusing instead on general-purpose compute. As such, measuring and
planning for the Al compute needed to realise national Al plans is challenging and relies on high-level
strategic goals articulated in national Al strategies. Translating the Al ambitions contained in such plans
into more concrete considerations — such as reviewing current national compute capacity and the Al
compute needs of public and private sector actors — would enable more efficient and targeted planning of
Al compute investments. Consideration should also be given to measuring whether national Al compute is
owned domestically or rented from providers abroad, such as through cloud services. Based on national
needs and security priorities, attention to domestically owned compute capacity could be warranted.

6.2. National and regional data collection and measurement standards need
to expand

Data collection should be expanded to measure current national Al compute capacity and needs,
particularly at national and regional levels. This could include measuring existing private and public HPC
clusters (including the number of data centres used to support Al workloads), which could be aggregated
to provide insights on a national level. Data collection should follow measurement standards, using
consistent terminology, indicators, and metrics to allow for comparability across jurisdictions. Collaboration
between private-sector actors, governments, national statistical offices, academia, and the OECD could
support such data-collection efforts.

The Al compute indicators under discussion proposed in Annex C could provide insights into national
compute capacity and needs. However, data associated with many of these indicators might not be publicly
available nor aggregated at the national level. For example, insights into private cloud computing capacities
and the number of Al compute hardware customers might be deemed commercially sensitive. To build on
existing data-collection efforts, analysis of the activities of national statistical offices related to measuring
Al compute could be explored.

6.3. Policy makers need insights into the compute demands of Al systems
Further insights are needed into the compute demands for both the training and inferencing stages of an

Al system’s lifecycle. Most data on Al compute focuses on training. While compute for Al training is critical
and requires significant computing resources within limited timeframes, inferencing can also use significant
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Al compute resources over an Al system’s lifecycle (Patterson et al., 202117); Patterson, 20221s)). Further
focus is needed on the compute requirements of Al systems during the various lifecycle stages — notably
data processing, development, deployment, and operation — along with analysis and forecasting of current
and future Al compute demands, so that policy makers and others can plan accordingly.

6.4. Al-specific measurements should be differentiated from general-
purpose compute

Identifying the differences between Al compute and general-purpose compute is challenging. Untangling
these measures would allow countries to quantify their existing Al compute capacity and allow for more
strategic coordination with other plans, for instance regarding investments into compute infrastructure for
advanced science and mathematical modelling. This could allow countries to leverage synergies between
Al-specific compute and general-purpose compute.

6.5. Workers need access to Al compute related skills and training

Al compute hardware alone is not sufficient to enable the development and deployment of Al. Users, such
as researchers and developers, need to be able to adequately access Al compute and related support
services to efficiently and effectively utilise HPC clusters. Very specific skills are often needed, such as
from engineers and those with experience using specialised hardware for Al. Perspectives from diverse
disciplines and backgrounds are also critical to close compute divides between developed and emerging
economies, and the public, academic, and private sectors. Research is needed into the supply of and
demand for Al compute skills, training, and workforce composition to understand what investments might
support the full effective use of national Al compute capacity.

6.6. Al compute supply chains and inputs need to be mapped and analysed
As countries scale up Al compute capacity according to national needs, demand for various inputs along
Al compute supply chains could increase. This could reveal bottlenecks and resource constraints, as

illustrated by challenges surrounding the semiconductor industry. Al compute supply chains and inputs
require further mapping and analysis so governments can build contingency and resilience plans.
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Z Conclusion

Al is a general-purpose technology impacting nearly every facet of the global economy, prompting
governments to formulate and publish national Al strategies. The successful implementation of national Al
strategies could become one of the factors defining a country’s ability to deliver innovation, productivity
gains, and long-term growth. Governments are allocating budgets and investing public funds to support
the implementation of such Al strategies and programs.

However, many countries have developed Al plans without a full assessment of whether they have
sufficient domestic Al compute capacity to realise these goals. Concerns are growing about reinforcing
divides between those who have the resources to create and use complex Al models to generate
competitive advantage and productivity gains, and those who do not. Without data on national compute
capacity and the needs of Al ecosystems, decisionmakers might not be able to effectively implement and
leverage strategic national Al investments and plans for economic growth and competitiveness.

Understanding of Al compute and its relationship to the diffusion of Al across OECD and partner economies
can improve the implementation of national Al strategies, and guide future policymaking and investments.
Countries should consider systematically taking stock of existing national compute capacity and reviewing
the current and emerging needs of their Al ecosystem. National Al compute plans based on common
definitions, standards, and data collection can equip governments and policy makers to make informed
decisions in a fast-changing global digital economy, and close compute divides around the world.
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Notes

! calculations by OpenAl estimate that “since 2012, the amount of compute used in the largest Al training runs
has been increasing exponentially with a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year
doubling period). Since 2012, this metric has grown by more than 300,000x (a 2-year doubling period would yield
only a 7x increase).” For more details see (OpenAl, 2018y).

2 In November 2009, the leading supercomputer ranked as #1 in the Top500 (called Jaguar) demonstrated a
performance of 1.75 peta floating-point operations per second (PFLOPS). In November 2022, the leading
supercomputer demonstrated a performance of 1 102 PFLOPS according to the Top500 (called Frontier).
Therefore, growth by a factor of approximately 630 between these two supercomputers can be calculated (i.e., 1
102 PFLOPS / 1.75 PFLOPS). For further detail, please visit: https://www.top500.0rg/statistics/perfdevel/

A large cloud compute provider does not wish to be attributed by name due to commercial confidentiality
concerns.
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Annex A. Examples of existing keyword definitions

The table below lists examples of keyword definitions from a variety of sources. This list does not constitute an endorsement by the OECD.Al Expert Group on Al
Compute and Climate nor by the OECD. It is provided to illustrate the ways terms are defined by various actors and organisations. Existing keyword definitions were
consulted in the Expert Group’s discussion of a proposed definition of Al compute, and analysis will continue to refine and iterate on this work.

Terminology

Definition

Compute

High-performance
computing (HPC)

“Compute is the manipulation of information or any type of calculation — involving arithmetical and non-arithmetical steps. It can be seen as happening within a closed
system: a computer. Examples of such physical systems include digital computers, analogue computers, mechanical computers, quantum computers, or wetware
computers (your brain).” — (Heim, 202149))

“Compute capacity means the physical or logical allocation of storage or processing power.” — (Law Insider, 2022;s07)

“The computing ability required for machines to learn from big data to experience, adjust to new inputs, and perform human-like tasks.” — (Komprise, 2022;s1))

“High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out
of a typical computer or workstation in order to solve large problems in science, engineering, or business.” — (Advanced Research Computing (ARC), 2022;52))

“High Performance Computing (HPC), in the simplest term, is defined as distributing a computing job to multiple processors instead of running it on a single processor
sequentially for a long duration.” — (National Center for High Performance Computing, 2022;53))

“High performance computing, also known as HPC, is the ability to perform complex calculations and massive data processing at very high speed by combining the power
of several thousand processors” — (National Institute for Research in Digital Science and Technology, 202154
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Cloud computing o  “Computing services based on a set of computing resources that can be accessed in a flexible, elastic, on-demand way with low management effort.” — (OECD, 2014ss))
e  ‘“Paradigm for enabling network access to a scalable and elastic pool of shareable physical or virtual resources with self-service provisioning and administration on-demand.
Examples of resources include servers, operating systems, networks, software, applications, and storage equipment.” — (International Telecommunication Union, 2019se)
e  “Cloud computing is a model for enabling ubiquitous, convenient on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction” — (National Institute of
Standards and Technology, 2011s7)

Edge computing e  “Edge computing is a distributed computing framework that brings enterprise applications closer to data sources such as loT devices or local edge servers. This proximity to
data at its source can deliver strong business benefits, including faster insights, improved response times, and better bandwidth availability.” — (IBM, n.d.se))

e “Cloud computing and edge computing are complementary, rather than competitive or mutually exclusive. Organizations that use them together will benefit from the
synergies of solutions that maximize the benefits of both centralized and decentralized models. Edge computing will take place at the absolute edge, and it will be
leveraged anywhere in a distributed computing architecture that meets use case requirements for latency, bandwidth, data privacy and autonomy.” - (Gill and Smith,
201859))

Processor e “Compute performance relies on central processing units (CPUs) and accelerators—graphics-processing units (GPUs), field programmable gate arrays (FPGAs), and
application-specific integrated circuits (ASICs).” — (Batra et al., 2018s07)

e  “The component of a computer system that controls the interpretation and execution of instructions. The CPU of a PC consists of single microprocessor, while the CPU of a
more powerful mainframe consists of multiple processing devices, and in some cases, hundreds of them. The term “processor” is often used to refer to a CPU.” - (Gartner,
n.d.e1)

e  ‘Inacomputer, a functional unit that interprets and executes instructions. A processor consists of at least an instruction control unit and an arithmetic and logic unit.” -
(Online Browsing Platform, 19932

Data centre e  “..adata centre is a physical facility that organizations use to house their critical applications and data. A data centre’s design is based on a network of computing and
storage resources that enable the delivery of shared applications and data. The key components of a data centre design include routers, switches, firewalls, storage
systems, servers, and application-delivery controllers.” — (Cisco, n.d.is3))

e  “Adata centre is the department in an enterprise that houses and maintains back-end IT systems and data stores — its mainframes, servers, and databases. In the day of
large, centralized IT operations, this department and all the systems resided in one physical place, hence the name data centre.” — (Gartner, n.d.s4)

o  “Data centre is used as a network infrastructure for carrying, transmitting, storing, and processing big data, which plays an important role in the application of cloud
computing, CDN distribution, etc.” - (He, He and Han, 2018ss))
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Annex B. Existing datasets, indicators, and proxies for Al compute

The table below outlines datasets, indicators, and proxies for Al compute available at the time of writing. This list is not exhaustive and constitutes a sample of
possible datasets and measurement tools that could be leveraged in future work.

Relevance to Al compute measurement

Source Indicators .
categories
Stanford HAI, Al Index Report Publication and conference counts, GitHub stars, patents (e.g., by region/country, sector), performance People (skills, training, diversity)
(Zhang et al., 2022p2) of state-of-art models in major domains, hiring and labor demand, investment, technology adoption, Innovation (R&D)
Covers changes in R&D, Al model performance and courses, PhDs, faculty in industry, number of ethics principles, media articles on Al, gender/race Policy (law, regulation, strategy)
app”cations’ the economy (jObS, investingy industry)’ diVerSity in Al, international coalitions, pUbIIC investment, Iegislation.
education, ethical challenges, diversity, policy, and
national strategies.
Top 500 Number of processing cores, number of operations per second, power usage; prevalence of specific Availability (supply)
(Top500, 2022;5) hardware, software, and interconnects; prevalence of hardware vendors; Green500 compares the Sustainability (efficiency, environmental
Alist of the fastest supercomputers released twice a number of operations made per watt (a power-efficiency benchmark). impacts)
year. |t compares computers using standardised
performance tests and collects information on the Note: The benchmarks provide information on the computers, their site, manufacturer, hardware, and
hardware stack used including hardware vendors and = software setups. Data exists for the best-performing 500 HPCs, many of which make the list several
countries of origin. Data collected biannually since times. Contributions to the list are voluntary, posing methodological challenges.
1993.
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The Global Al Index

(Tortoise Media, 2022¢))

Examines Al development along three axes —
implementation, innovation, and investment — and
benchmark and ranks 62 countries. The
measurement framework is aligned with the OECD
“Handbook on constructing composite indicators” and
based around capacity (as opposed to current use)
for high Al output now and in the future.

Government Al Readiness Index

(Oxford Insights, 202167))

Uses 42 indicators across 10 dimensions for 9
geographic regions to measure and rank the
readiness of 160 countries to implement Al for public
services to citizens. Analysis is conducted on three
pillars: government, technology, and data and
infrastructure.

Global Data Protection Index

(Dell Technologies, 2021;ss))

Data collected from interviews of 1 000 IT
decisionmakers around the world to gauge cloud
security protection strategies and comfort.

Report of Data Centres and Data Transmission
Networks

(IEA, 2021;s9))

Describes growth of network use and data services,
current energy consumption of data centers, data
center use of renewable energy, efficient data
transfer (software virtualisation), and changing
networks (e.g., growth of mobile).

LinkedlIn skills reporting, GitHub stars, Scopus publications, number of Google searches about Al
STEM graduates (including gender), government spending, research tax credits, Al policies, funding to
Al companies (startups/unicorns).

Note: The infrastructure indicators are a combination of internet speeds, Top500 data, and supply chain
exports (e.g., chips). Several indicators are labelled as proxies, which are aggregated to rank countries
and not necessarily Al-specific. Some indicators use information sources available on the OECD.Al
Policy Observatory (e.g., Scopus).

National Al strategy, data protection and privacy policy, national ethics framework, trust in government
websites, software spending, number of unicorns and startups, R&D spending, digital skills, number of
Al research papers, telecoms infrastructure and bandwidth, open government data (data availability),
open data policies, gender gap (data representativeness).

Note: The index focuses on government readiness to use Al, not public- or private-sector use in general.
The infrastructure pillar focus on telecommunications infrastructure and networking speed (which are
necessarily Al-specific measures) and Top500 data.

Survey results on cost of data leak instances, unscheduled downtime, comfort with current cloud
security setup, percentages of public/private cloud(s), security vendors, and emerging cloud services
(including Al as a Service).

Note: Data relates primarily to security dimensions around cloud uses, applications, and growth in
concern and cost of cloud cyberattacks and data protection.

Cloud vendors’ renewable and total energy consumption, internet traffic over time, data center and
network (fixed-line and mobile) electricity use in watt-hours.

Note: Data is measured globally (not by country) and does not contain data specific to Al compute.
However, data gives trends of cloud energy consumption, accessibility, and efficiencies.

Availability (supply)

People (skills, training, diversity)
Policy (law, regulation, strategy)
Innovation (R&D)

Security & sovereignty (supply chains)

Availability (supply)

People (skills, training, diversity)
Policy (Law, regulation, policy)
Innovation (R&D)

Availability (cloud)
Security

Availability (supply)
Sustainability (efficiency, environmental
impacts)
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Digitization and Energy

(IEA, 2017707)

Considers impact of digitisation across various
industries, including ICT. Provides a cybersecurity,
privacy, and economic disruption risk assessment.

Cisco Global Cloud Index

(Cisco, 201871)

Forecasts growth of cloud traffic, data center traffic,
compute, and data center storage.

Cisco Annual Internet Report (2018-2023)
(Cisco, 202072))

Forecasts network and telecommunications growth
up to 2023. Includes security assessment which
reviews some of Al's impacts and GDPR adoption.

Measuring Cloud Services Use by Business,
OECD

(Ker, 2021p73))

Defines public cloud and cloud services according to
various product classification frameworks and
computes prices paid for product categories (e.g.,
data processing and internet publication) to proxy
cloud use by business.

Data center, network power and energy use over time; network traffic per year; mobile broadband
subscriptions; internet access; investment in digital infrastructure; network-enabled smart-home
technology.

Note: This source considers the impact of emerging technology (including ML on different industries)
and rebound effects. The scope is broader than compute alone (with no specific mentions of Al
compute). Includes data from Cisco, which may serve as proxies for measuring the hardware
infrastructure supporting Al compute.

Number and country of hyperscalers, datacenter traffic (to edge, among datacenters, within datacenters)
per year for traditional and cloud data centers, and workloads and compute instances in the cloud;
public/private cloud growth, service model trends, applications, storage, APIs, secure servers, and
speeds and latencies.

Note: This source offers data on model service trends, cybersecurity, growth of hyperscale data centers,
and cloud compute for application-specific (but no Al-specific) workloads at regional (not national) scale.

Billions of internet users, devices, connection styles, loT and mobile-to-mobile connections, mobile
network growth, GDPR adoption survey data.

Note: This source focuses on networking, forecasting for internet access, edge, and mobile growth by
region. Information is not necessarily Al-specific.

USD spent by businesses in different product categories, from information services to news and internet
publishing.

Note: This source details analysis of data from country supply-use tables. Many countries’ supply-use
tables data is sparse or absent in broad product categories like information services and in narrower
categories for cloud-specific uses and applications. The report aims to complement results for ICT
survey-based data with results gleaned from economic and business statistics.

Availability (supply)

Sustainability (efficiency, environmental
impacts)

Security

Availability (cloud)
Security & Sovereignty (location, ownership)

Use (demand)
Security and Sovereignty (location)

Use (cloud demand)
Policy (law, regulation, strategy)
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MLCommons

(MLCommons, 2022;74))

Provides benchmarking, datasets, and best-practices
for measuring machine learning training and
inference through a community of over 50 founding
members and affiliates from the private sector,
academia, and non-profits globally.

MIT Global Cloud Ecosystem Index

(MIT Technology Review and Infosys Cobalt, 2022r75))
Ranks 76 countries and how their policy, skills, and
technology affect the availability of cloud services.
Pillars are infrastructure, ecosystem adoption,
security and assurance, and talent and human
affinity.

ISO/IEC TR 24030:2021

(ISO and IEC, 20217s))

Provides a selection of submitted Al use cases,
focusing on trustworthiness (e.g., fairness and bias).
Source behind paywall.

Training performance, including HPC, data centre, edge, and mobile inference.

Note: This source provides performance data for training and inference of machine learning systems
through benchmarking such as MLPerf, which includes a benchmark suite measuring how fast systems
can train models to a target quality metric and how fast systems can process inputs and produce results
using a trained model. Datasets and best-practices are also provided.

Number of datacenters, secure datacenters, and IP addresses in a country; digital service adoption,
Saa$S growth, and price of broadband services; prevalence of engineering and mathematics skills, and
internet and digital literacy.

Note: The pillars of analysis give composite scores for each country. These pillars are weighted (e.g.,
infrastructure pillar accounts for 15% of each country’s score) and averaged into a single score to rank
countries’ cloud ecosystems. The specific data and methodology behind these scores are not included.

Distribution of submitted use cases (broken down by application, status of development, Al domain task
(e.g., optimisation, NLP).

Note: This source focuses on the purpose of Al, including applications and trustworthiness, deployment
models for Al (location in network and access), and Al use (model and application).

Availability (supply)
Innovation (R&D and measure of
performance)

Availability (supply)

People (skills, training, diversity)
Innovation (R&D)

Access (access rights)

Security and sovereignty (location)

Access (access rights)
Security and sovereignty (location)
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Annex C. Indicators under discussion

Informed by the considerations discussed for building a national Al compute plan, this list provides possible indicators and tools identified as
corresponding to the proposed framework for measuring Al compute capacity availability and demand. Some of these metrics, indicators, and proxies
already exist and are used within technical Al communities, whereas others are proposed for discussion and development. This list is under discussion
by the OECD.AI Expert Group on Al Compute and Climate and will continue to develop as part of their work.

Description Possible indicators Component

High-performance computing clusters Availability (supply)
High-performance computing (HPC) Use (demand)
clusters are the backbone of the compute Access (cost)

Hardware specifications (quantitative and qualitative, like the specifications of a Top500 entry), and data centre infrastructure, such as:
e  Memory
e Processors, co-processors, and cores

infrastructure required for Al workloads. X Security & Sovereignty
Measuring this infrastructure and its ¢ Power consumption (location, ownership)
properties could provide insights into o Number of national data centres and their ownership (i.e., public vs. private sector; domestic vs. international owned) '
available national Al compute supply and Performance on HPC and ML benchmarks (i.e., based on Al application scenarios) such as:
demand. . \ . ) .

e  Linpack benchmark score from the Top500 (a measure of a system's floating-point computing power)

e Graph500 score (a rating of supercomputer systems focused on data-intensive loads)

e MLCommons score (for machine learning workloads, based on application scenarios)

Utilisation:

o  Utilisation rate of high-performance computing clusters for Al (i.e., available supply vs. average used supply)

e Number of high-performance computing users and their affiliation (i.e., public vs. private sector)

Cost:

e  Total cost of HPC clusters (i.e., capital expenditures vs. operations; private vs. public ownership; domestic vs.

international)

Compute demand of Al systems e  Estimate of average compute demand according to key stages of the Al system lifecycle, such as compute used for trainingand ~ Use (demand)
Measuring the demand of Al systems is inferencing (i.e., per application such as natural language processing, computer vision etc.)

important to learn about the needs of the e  Estimate of key trends such as average data sets size and number of model parameters over time
required compute infrastructure. Learning e Estimate of trends in the performance of Al hardware (i.e., peak performance in FLOPS, memory capacity, energy usage)
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about trends and developments can
inform future considerations.

Talent and skills

Talent and skills enable compute
infrastructure to be used effectively.
Learning about the talent and skills
landscape can inform compute policy
decisions and direct investments.

Private cloud providers

Private cloud providers are key for
researchers and industry to access Al
compute. Learning about their setup,
costs, etc. could inform the requirements
for public cloud and HPC infrastructure.

National Al plans

National Al plans provide insights into Al
compute demand and needs based on a
country’s context and national objectives.
Public-sector spending on Al compute
Public spending on Al compute can
provide insights into current and future
investments.

Private-sector spending on Al compute
With Al increasingly used and developed
in the private sector, measuring private-
sector spending on Al compute can inform
the state of current and future supply.
Supply chains

The resilience of Al compute supply
chains is crucial to maintain sufficient Al
compute capacity over time and in the
face of possible economic and
environmental shocks.

Qualitative analysis of local and cross-border regulations in data sharing and privacy

Expected throughput (i.e., number of inferences) for Al applications per application domain (i.e., natural language processing,
computer vision etc.)

Affiliation of Al system creator of state-of-the-art Al systems (i.e., public or private sector)

Prevalence of required skills in employment databases (e.g., LinkedIn) including key words and formal certifications

Number of students enrolled in relevant degrees (e.g., undergraduates, graduate students, and doctoral programs, also
disaggregated by gender if possible)

Size of the Al compute research (industry and academia) community and amount of available funding in sectors to investigate
skill and worker transfer

Number of yearly expected graduations in relevant degrees (also disaggregated by gender if possible)

Number of private service providers offering training of relevant skills

Percentage of market share of cloud providers for Al compute compared to, e.g., the capacity provided by academic HPC
initiatives

Costs for renting Al compute via the cloud over time i.e., cost per hour or cost per FLOPs

Number of mentions of Al compute initiatives in national Al plans, such as in policies or national Al strategies
Qualitative analysis of Al compute initiatives in national Al plans, such as in policies or national Al strategies

Percentage of public sector spending on compute infrastructure (per relevant ministry)

Percentage of public sector spending on “on premise” vs. cloud compute

Number of international HPC programs with domestic participation

Number and quality of partnerships with global and regional commercial cloud providers, such as private-public partnerships

Percentage spending of the private sector (per business sector) on compute infrastructure
Differences in compute spending by enterprise size (i.e., large business vs. small-and-medium enterprises)

Qualitative insights into and risks of the supply of the most prominent providers of compute hardware, especially for Al compute
Qualitative insights into risks and fragility (such as natural disasters and geopolitics) of supply chains for critical Al compute
components

People (skills, training,
diversity)

Availability (supply)
Access (cost)

Policy (law, regulation,
strategy)

Availability (supply)
Use (demand)

Policy (law, regulation,
strategy)

Availability (supply)
Use (demand)

Security & Sovereignty
(supply chains)
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Annex D. Survey results on Al compute

Figure D.1. Survey respondents by sector

Other
Civil society 8%
3% S

International organisation
3%

Academia
30%

Note: Of the 118 respondents who partially or fully completed the survey, 117 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute (March-April 2022)

Figure D.2. Geographic distribution of survey respondents

Rest of world

United Kingdom

0,
/‘éf Africa 2
e 2%

United States
24%

Note: Of the 118 respondents who partially or fully completed the survey, 118 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate, survey on Al compute (March-April 2022)
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Figure D.3. Organisation or enterprise size of survey respondents

Medium-sized (50 to 249
people)
11%

Small (10 to 49 people)

Large (>250 people) 10%

64%

Micro (<10 people)
7%

Note: Of the 118 respondents who partially or fully completed the survey, 118 respondents answered this question. According to the OECD
(2022507), small and medium-sized enterprises (SMEs) employ fewer than 250 people. SMEs are further subdivided into micro enterprises (fewer
than 10 employees), small enterprises (10 to 49 employees), and medium-sized enterprises (50 to 249 employees). Large enterprises employ
250 or more people.

Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute (March-April 2022)

Figure D.4. Full-time equivalent (FTE) employees dedicated to the management and use of Al
computing resources

How many full-time equivalent (FTE) employees do youlyour organisation have dedicated to the management and
use of Al computing resources?
40%

35%
30%
25%
20%
15% |
10% |
a N
0% L L 10 L L L [ L

| don't know 0 11-50 51-100 101-250 250+

Note: Of the 118 respondents who partially or fully completed the survey, 85 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute, March-April 2022
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Figure D.5. Measurement of Al compute

Do youlyour organisation currently measure how much Al compute you have?

35%

30%

25%

20%

15%

10%

5%

0%

Yes - we have metrics and Somewhat — we use some metrics but ~ No —we do not have metrics and | don’'t know
measurement tools in place not regularly measurement tools in place

Note: Of the 118 respondents who partially or fully completed the survey, 78 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute, March-April 2022

Figure D.6. Challenges accessing sufficient Al compute

Do youlyour organisation have challenges accessing sufficient Al compute?

| don't know
18%

Yes
52%

No
30%

Note: Of the 118 respondents who partially or fully completed the survey, 77 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute, March-April 2022
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Figure D.7. Top barriers or challenges to accessing Al compute

What are your organisation's top barriers or challenges in accessing Al compute?
50%

45%
40%
35%
30%
25%

20%

15%

10%

i =
. . . - .

Cost Expertise Availability Suitability | don't know Other

Note: Of the 118 respondents who partially or fully completed the survey, 108 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute, March-April 2022

Figure D.8. Cost allocation to Al compute

What percentage of yourlyour organisation's total annual costs are spent on Al compute?
40

30

25

5_
0-I----

0% 10% 20% 30% 40% >50% | don't know

Note: Of the 118 respondents who partially or fully completed the survey, 77 respondents answered this question.
Source: OECD.AI Expert Group on Al Compute and Climate survey on measuring Al compute, March-April 2022
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Annex E. Expert group co-chairs, members and
observers, February 2023

Name Title Organisation Group / Delegation

Ahuactzin, Juan Research & Development Director ProMagnus Company Business

Manuel

Aranda, Luis Policy Analyst OECD Secretariat

Aristodemou, Leonidas  Analyst OECD Secretariat

Balasiano, Aviv VP and Head of the Division Technology Infrastructure in the Israeli Israel

Innovation Authority

Barrett, Gregg CEO Cirrus Al Business

Bertrand, Arnaud Chief Technical Officer and Senior ATOS Business
Fellow

Bouvry, Pascal Co-CEO LuxProvide Business

Caira, Celine Economist/Policy Analyst OECD Secretariat

Cardoso Emediato de General-Coordinator of Digital Ministry of Science, Technology and Brazil

Azabuja, Eliana Transformation Innovation

Davidson, Landon AI/ML Business Development NVIDIA Business

Clark, Jack [ONE Al Chair] Co-founder Anthropic Business

Elison, David Senior Al Data Scientist Lenovo Business

Escobar Silva, Maria
Jose

Escobar, Rebeca
Fernandez Gémez,
Liliana
Formica-Schiller, Nicole
Frankle, Jonathan

Garg, Arti

Gibson, Garth
Gonzalez Fanfalone,
Alexia

Heath, Tamsin

Heim, Lennart
Hodes, Cyrus
Holoyad, Taras

Hui, Chen
Janapa Redi, Vijay
Javorsek, Jan Jona

Kanter, David
Kent, Suzette

Associate Professor

Head of Studies Center
Advisor

Board Member

Chief Scientist / Assistant Professor
of Computer Science

Chief Strategist, Al Solutions
Chief Executive Officer (former)
Economist, Communication
Infrastructures and Services Policy
Unit

[ONE Al Chair] Deputy Director,
Economic Security

Researcher

Co-Founder

Standards expert

Assistant Chief Executive
Associate Professor

Head of Networking Infrastructure
Centre

Executive Director

Business Executive, Former Federal
Chief Information Officer of the
United States

Universidad Técnica Federico Santa Maria

Federal Telecommunications Institute

Digital Development Directorate - National
Planning Department

German Al Association (KI-Bundesverband)
Mosaic ML and Harvard University

Hewlett Packard Enterprise
Vector Institute for Al
OECD

Department for Digital, Culture, Media and
Sport (DCMS)

Centre for the Governance of Al

World Climate Tech Summit

Federal Network Agency for Electricity, Gas,
Telecommunications, Post and Railway

Infocomm and Media Development Authority
(IMDA)

Harvard University John A. Paulson School of
Engineering and Applied Sciences

Jozef Stefan Institute

MLCommons
Kent Advisory Services

Civil Society and Academia

Mexico
Colombia

Germany
Civil Society and Academia

Business
Civil Society and Academia
Secretariat

United Kingdom

Civil Society and Academia
Civil Society and Academia
Germany

Singapore
Civil Society and Academia
Civil Society and Academia

Business
Business
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Khareghani, Sana
Kimberger, Johannes

Leon
Kriippel, Roland
Lee, Jiwon

Lohn, Drew

Luccioni, Sasha
Macoustra, Angus

Mangla, Utpal
Matsuoka, Satoshi
Moetzel, Ulrike
Moretti, Lorenzo

Muijica, Maria Paula

Nolan, Alistair
Ouimette, Marc-Etienne
Parashar, Manish

Parker, Lynne

Perset, Karine
Radwan, Sally
Rao, Anand
Roquet, Ghilaine

Sampaio Gontijo, José
Gustavo
Stancavage, Jayne

Stogiannis, Dimitris

Strier, Keith
Tretikov, Lila

Georgios Tritsaris
Tyldesley, Jennifer

Vasilis, Bonis

Velsberg, Ott
Weber, Verena

Yeong, Zee Kin

Zagler, Martin

Head (former)
Al and climate expert

Electronics and Autonomous Driving;
Supercomputing

Policy Officer
Senior Fellow

Research Scientist
CTO, Head of Scientific Computing

VP and Senior Partner
Director
Economist/political scientist

Innovation Policy Coordinator to the
Minister

Advisor on Digital Transformation,
Management and Compliance

Senior Policy Analyst
Global Lead Al Policy

Director, Office of Advanced
Cyberinfrastructure (OAC)

Deputy CTO of the United States of
America (former)

Head of Unit, OECD.AI
Chief Digital Officer
Global Al Leader

Vice President of Strategy and
Planning

Director

Global Executive Director, Digital
Infrastructure Policy

Head of the Research, Development
and Innovation (RDI) Statistics Unit
[ONE Al Chair] Vice President

CVP, Deputy Chief Technology
Officer

Researcher

Deputy Director, Economic Security
(former)

Technical Manager, Team Leader,
Senior Software Architect and
Technical Coordinator of European
Projects

Chief Data Officer

Head of Communication
Infrastructures and Services Policy
Unit

Assistant Chief Executive

Danish Business Authority

UK Office for Al
Consultant on Al and Climate - OECD

Federal Ministry for Education and Research

Ministry of Technological Innovation and
Digital Transition

Georgetown University Center for Security and
Emerging Technology

Hugging Face

Commonwealth Scientific and Industrial
Research Organisation (CSIRO)

IBM Global Business Services

RIKEN Center for Computational Science
Federal Ministry for Digital and Transport

Ministry of Technological Innovation and
Digital Transition

High Presidential Advisory Office

OECD
Amazon Web Services
National Science Foundation

United States Administration

OECD

United Nations Environment Programme
PwC

Digital Research Alliance of Canada

Department of Digital Science, Technology
and Innovation

Intel
National Documentation Centre

NVIDIA Worldwide Al Initiative
Microsoft

Sectoral Scientific Council in Natural Sciences
(NCRTI, Greece)

Department for Digital, Culture, Media and
Sport (DCMS)
National Documentation Centre

Ministry of Economic Affairs
OECD

Infocomm Media Development Authority of
Singapore

Ministry of Industry, Business and Financial
Affairs

United Kingdom
Consultant

Germany
Italy
Civil Society and Academia

Civil Society and Academia
Australia

Business
Japan
Germany
Italy

Colombia

Secretariat
Business
United States

United States

Secretariat

Civil Society an Academia
Business

Civil Society and Academia

Brazil
Business
Greece

Business
Business

Civil Society and Academia
United Kingdom

Greece

Estonia
Secretariat

Singapore

Denmark

Note: Member biographies are available on OECD.AI
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